

Communications Requirements and Analysis for New and Emerging FAA Applications

Mark Simons

MITRE/CAASD

Requirements Analysis - Purpose

- Determine the collective impact of new and emerging FAA systems on the access architecture that connects an FAA facility with a vendor's network point of presence (POP)
- Estimate aggregate access bandwidth requirements and latency for these new and emerging systems
 - Accurate sizing of access bandwidth is key to providing costeffective service
 - Latency is a critical performance parameter for some FAA applications

Requirements Analysis - Approach

- Select New and Emerging NAS applications
 - New applications or updates to current applications
 - Operational 2002-2005
- Develop individual system requirements
 - Bandwidth and latency
- Define notional model of access architecture
 - Not intended to endorse a specific architectural approach
- Employ a queuing modeling tool to determine aggregate bandwidth requirements and latency
- Interpret results
 - Study trade-offs between latency and bandwidth

New and Emerging FAA Applications

- Decision Support Systems
 - Traffic Flow Management-Infrastructure (TFM-I)
 - Enhanced Traffic Management System (ETMS)
 - Departure Spacing Program (DSP)
 - Runway Visual Range (RVR)
 - Ground Delay Program (GDP)
 - Collaborative Reroute and Coordination Tools (CRCT)
 - Military Operations and Support (MILOPS)

New and Emerging FAA Applications

Navigation and Surveillance

- Wide Area Augmentation System (WAAS)
- Flight Information Service Broadcast (FIS-B)
- Automatic Dependent Surveillance Broadcast (ADS-B)
- Traffic Information Service Broadcast (TIS-B)
- Airport Surveillance Radar(ASR)
- Air Route Surveillance Radar (ARSR)

New and Emerging FAA Applications

Automation

- User Request Evaluation Tool (URET)
- Problem Analysis Resolution and Ranking (PARR)
- Standard Terminal Automation Replacement System (STARS)

Air/Ground Communication

- Controller-Pilot Data Link Communications (CPDLC)
- Weather Systems
 - Weather and Radar Processor (WARP)
 - Integrated Terminal Weather System (ITWS)
 - Operational and Supportability Implementation Systems (OASIS)

Estimated Requirements for Individual Systems

	Bandwidth			One Way Latency		
	> 1 Mbps	< 1 Mbps; > 100 kbps	< 100 kbps	< 100 ms.	> 100 ms; < 1000 ms	> 1000 ms
STARS	• •			•		
WARP	•		•			•
ITWS	•		•			•
WAAS	•	•	•	•		
TFM-I		•				•
Radar Services		•		•		
URET			•	•		
PARR		•		•		
SAMS/MILOPS			•		•	
FIS/TIS/ADS-B			•		•	
CPDLC/ATN			•		•	
OASIS			•			•

Requirements Analysis - Modeling

• Tools

- NetMaker Mainstation from Make Systems
- Uses analytical methods based on queuing theory
- Scenarios
 - Generalized ARTCC
 - Generalized TRACON

Requirements Analysis - Inputs

Model Parameters for Generalized ARTCC

	Traffic Model	Baseline Scena	rio Parameters	Peak Scenario Parameters	
System		Input	Output	Input	Output
ASR-11	CBR	280 Kbps	n/a	280 Kbps	n/a
ARSR/ATCBI	CBR	316 Kbps	n/a	316 Kbps	n/a
Broadcast	CBR	25 Kbps	64 Kbps	64 Kbps	64 Kbps
CPDLC	Poisson	n/a	40 Kbps	n/a	128 Kbps
MILOPS	Poisson	64 Kbps	n/a	64 Kbps	n/a
TFM-I/CRCT	Poisson	150 Kbps	n/a	256 Kbps	n/a
URET	Poisson	80 Kbps	70 Kbps	110 Kbps	100 Kbps
PARR	Poisson	100 Kbps	80 Kbps	200 Kbps	160 Kbps
WARP	CBR	1.5 Mbps	n/a	1.5 Mbps	n/a

Requirements Analysis - Results

Model Results from Generalized ARTCC

ARTCC Model	ARTCC Access Link Utilization		Latency Across Access Link
2 T1 Access Link	Input	Output	
Baseline Model	99%	17%	154 ms
Peak Model	103%	24%	n/a
3 T1 Access Link	Input	Output	
Baseline Model	66%	11%	3.9 ms
Peak Model	71%	18%	4.6 ms
4 T1 Access Link	Input	Output	
Baseline Model	50%	8%	2.2 ms
Peak Model	54%	13%	2.4 ms

Model Results from Generalized TRACON w/o STARS

ARTCC Model	ARTCC Access Link Utilization		Latency Across Access Link
2 T1 Access Link	Input	Output	
Baseline Model	87%	5%	12.2 ms
Peak Model	91%	9%	15.7 ms
3 T1 Access Link	Input	Output	
Baseline Model	53%	33%	3.3 ms
Peak Model	60%	6%	3.4 ms
4 T1 Access Link	Input	Output	
Baseline Model	44%	3%	2 ms
Peak Model	45%	4%	2.2 ms

Requirements Analysis - Summary

- Equivalent of 3 T1s of access bandwidth will be needed at an ARTCC
- Equivalent of 8-28 T1s of access bandwidth will be needed at a TRACON
 - Driven by the number of connected towers and final STARS implementation
 - Initial estimates for STARS call for the equivalent of 3-5 T1s of access bandwidth per ATCT/TRACON pair
- Results should aid forecasting of growth requirements for the planned FAA Telecommunications Infrastructure (FTI)

